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A method is given for obtaining exact solutions of certain mixed Cauchy probl- 
ems for second order nonlinear hyperbolic equations. A detailed study is made 

using the case of the velocity potential equation corresponding to unsteady, plane- 
parallel flows of a polytropic gas. This method can be applied to a wider class 

of equations. Some properties of the solutions obtained are studied. An approx- 
imate theory of propagation of curvilinear weak shock waves through a uniform 

background is constructed to illustrate the application. The investigation comm- 
enced in [l] is continued. 

1. Let, at the initial instant t = 0 , a homogeneous polytropic gas in which the 
speed of sound c = 1 be at rest inside or outside a sufficiently smooth, closed, convex 
cylindrical surface ss. At the time t = 0 a piston S, begins te move through the gas 
with zero initial normal velocity vn and nonzero normal acceleration w, ,compressing 
or rarefying the gas. No restrictions are imposed on the law of motion of the piston 8, 
occupying the position So at the time t = Cl except the conditions of sufficient smoo- 
thness of the law of motion of the convex surfaces of St and the conditions already 
given for v, and W,.We seek a solution of a nonlinear equation for the velocity poten- 

tial @ (x1, x2, t) Izl in a region bounded by the piston surface S, and the surface of 
weak discontinuity R1 which detaches itself at the initial instant from the surface Ss 

and propagates with unit normal velocity through the gas at rest. 
An approximate solution near the surface tit for the problem and conditions formul- 

ated above was constructed in [I], where the limiting values for the times of existence 
of smooth potential flows related to the geometry of the surface S, and to the law of 
motion of the piston were found for the gas compression case. We find that the method 
used in [l] can be employed to construct an exact solution to our problem in the form 
of a functional series with special independent variables. The question of the region of 
convergence of this series however, remains open in the general case. 

Let us replace the velocity potential @ (x1, za, t) by an unknown function y (Ut, 
ZL~, t) according to the formula 

Y = ZIUl + x.& - aJ (Xl, 52, t) + Mt 

Here Ad is a constant appearing in the Cauchy equation 

(1.1) 

where c is the speed of sound, ui are the velocity vector components and y is the 
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adiabatic index. An equation for Y in terms of the variables r, ‘p, t (ul=r cos cp, 

U2 = F Sin cp) was obtained in [l]. 
The formulas for transforming to the physical LZ~, x2, t -space are 

xi = yr COS ‘p - F-lY”, sin cp, x2 = yP,sincp 

We seek a solution to the mixed Cauchy problem in the form 
m 

\r (F, cp, t) = 2 a(k) (cp, t) rk 

k=o 

The plane F = 0 corresponding to the motion of the surface 

t r-‘Y?“, cos cp (1.3) 

(1.4) 

fit ,)f weak discontinuity 
represents, in the F, cp, t -space, the characteristic manifold for the equation defining 
the function y (F, cp, t). The condition that at F = 0 the formulas (1.3) define the 

motion of the surface Rt moving at the speed of sound equal to unity, yields the follo- 

wing expressions [l] 

a(O) = const + xt, @‘I) = t + f (cp) (1.5) 

where f (VP) is an arbitrary function used to define, at t = 0 , the form of the weak 

discontinuity R, coinciding with the surface 8, 

z1 = f (Cp) COS cp - f’ (9) sin 9, x2 = f (cp) sin 6 + f’ (cp) cos Q, (1.6) 

Inserting the series (1.4) into the equation for Y (F, cp, t) and equating the coefficients 

of r(s) to zero, we obtain the following equation for acSt2) (cp, t) (S > 0): 

(s + 2) (s + 2) u(s+z) - 2 (s + 2) (t + f + f”) ajs+2) = P+“) (cp, t) (1.7) 
s-2 

where FcSt2) (cp, t) = 2 ((2i + ij + l)at+2)aa+2)a{;-i-j) _ 

i,i=o 

- (s _ 1 _ i - j)(s _ i _ j)a~:2)aa:2)a(s-i-l)} _ 

S-l 

_ 2 {(j + l)(j + 2) a~~:ptl)a(i+z)ajg+l-i-j) + 

1, .I=0 

+ (i + l)(j + l)(i + 2)a(i+')af'f2)a~~1-i-l) + 2j(i + 1) aji+l)a6’+l)a~~2-i-j)} .+ 

+ i i(i + 1) (j + 1) 

ajitl)ajj+l)a(5+2-i-j) 
01 + 

i.3=0 

+ (i + 1) (j + 1) (s + 2 - i - j) aji+1)~j’+1)~(s+2-i-~)} + (1.8) 

+‘i{2(i+l) 9 ac+l)a<pt+l-i) _ 2&1'&+2) 
[P 

i=o 
- -&(i + l)(i + 2)a("+2)a{s-i)) - 

+ 2 (i -I- 1) (s - i _1- 1) ~,j~+‘)a(~-~+l) + & (s - 1) ~a(“) - 
I 

In (1.8) we have a(-“) s 0 when k > 0, and the prime accompanying the summation 
sign means that the combination(i, j) = (0, 0) IS excluded. Thus the only functions 

to appear in the right-hand sides of (1.7) are a(k) and their first and second derivatives 
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in rp and t for k < s + 1. The general solution of (1.7) has the form 

ats+z, = (t + f + f”)““” 
[ 

c@+y(#) I ; s J7(s+2) (cp, t)(t ff +p)-“+“w] (1.9) 
0 

where c@+‘J) (cp) are arbitrary functions. Arbitrary functions appear in the coefficients 
of acS) by virtue of the fact that at r = d the Cauchy data give a non-unique solution 

for the function Y (r, cp, t) , since the plane is the characteristic plane. The functions 

C@+a) (rp) must be obtained from the prescribed law of motion of the piston surface St. 

2. We consider the problem of determining the functions c(*+%) (cp). Let the motion 
of the closed surface s, be defined by the equations 

Xl = 21 (B, t>, x2 = x2 0% t> (2-l) 

Here fi is a parameter such that when t = 0, /3 = cp and the equations (2.1) assume 
the form (1.9). If the surface s t represents an impermeable moving wall, then the 
following kinematic condition must hold on this wall: 

(u-n)= V, (2.2) 

where u is the velocity vector, n = (n, (p, t), n,.(P, t)) is a unit vector normal to 
St and v,, = Tm (p, t) is the normal velocity of motion of St. Let us expand (2.2). 
We obtain 

r* (P, t) (cos % (P, t) r% (P, t) + sin cP* (P, t) n2 0% t)) = V, (Pt t) (2.3) 

Here rlk (B, t) and ‘P* (if6 t) are certain a p r i o ry unknown functions such that 

* = r* cos qa and ua* = 
r!, 

r,sin ‘p* define the components (cp* (cp, O)=q, r* 
O)=O) of the velocity vector on the piston. The functions re (fi, t) andip, (p, t) 

are found from 
m 

zi (p, t) = cos rp* 2 (;L + 1) dk+l) (cp,, t) r.*I( - sin ‘p jj at+‘) (cp*, t) rztzk 
k=o k=o 

co 

r2 (p, t) = sin rp* 2 (k + 1) dk+l)(cp8, t) r*k + cos ‘p* i u&~+‘)((P,, t) rek (2.4) 
k=o k=o 

which is obtained by inserting ro, cpa and y from (1.4) into (1.3) and the left-hand 
sides are taken from (2.1). The function v, (p, t) is obtained from the formula 

(2.5) 

The relation (2.3) is an identity in p and t. Let us differentiate it with respect to t 
and set t = 0, assuming that all functions entering (2.3) and (2.4) are infinitely diff- 
erentiable. The corresponding partial derivatives of r* and q* are obtained by differ- 
entiating Eqs. (2.4). As the result we obtain a sequence of equations which yield, con- 
secutively, all functions fIPt2) (cp) for s > 0 under the conditions that the normal 
acceleration of the piston IV, (cp, 0) # 0 at t = 0 and that f t f” # 0. 

The first differentiation of (2.3) and (2.4) yields the following equations for cc2) (9): 

$ (0, 0) cos ‘p + 2 (cp, 0) sin ‘p = V, (cp, 0) = al(‘) (cp, 0) + 

+ 2d2) (cp, 0) $$ (cp, 0) = 0 
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% (cp, 0) = w, (cp, 0) (2.6) 

Equations (2.6) yield the functions C(z) (VP) uniquely expressed in terms of W, (cp, 0) 
and f (cp). Next, c(s) (cp) is found by superimposing the linear combinations of (2.4) 

differentiated twice with respect to t 

i?iX, 

-dt;rCOW + 

where 

- 
(2.7) 

dcp, 
at 

= (f + f”)-l($ - 2@ %) , (2.8) 

r = -zx,sinrp+z,coscp, t=O (2.9) 
This process can obviously be continued. The conditions 

ar,/dt (Cp, 0) + 0, f + f” # 0 

holding for the convex surfaces S, guarantee the possibility of obtaining unique expre- 
ssions for any C@) (9). The expressions for C ‘ls’ (cp) at s # 3 are omitted as they are 
cumbersome. 

3, The series (1.4) the coefficients of which were shown above to be uniquely deter- 
minable from the prescribed law of motion of the piston St, gives an exact formal sol- 

ution for the problem posed. Determination of the region of convergence of this series 
and of the series for the corresponding derivatives entering (1.3). present an extremely 
difficult task. 

For the linear hyperbolic systems [3] gives a method for solving the Cauchy problem 
using convergent expansions in terms of the running waves. In these series generalized 

functions appear as multipliers and they contain singularities of a lower order than that 
of the term accompanied. The coefficients of these generalized functions are obtained 

from ordinary differential equations. The proof of convergence of such series can be re- 

duced to the Cauchy-Kowalewska [4] existence theorem. However it is not at all appa- 
rent how these results could be extended to the case of nonlinear hyperbolic equations. 

Assuming that the function Y has continuous partial derivatives of order J?X + 2 con- 
taining the differentials with respect to each of the variables t, F and cp of order not 

higher than m and neglecting the ( m + i )-th term in (1.4), we obtain an approxim- 

ate solution to the equation for ‘#! (7., cp, t). The functions (2.1) are assumed to poss- 
ess the derivatives of order up to ?n. The assumptions made hold for a number of real 
flows [S]. for various values of m. 

Let us establish the region of convergence of a series analogous to (1.4), for the sim- 
plest model case in which the solution of the mixed Cauchy problem is obtained using 

the method proposed for the one-dimensional wave equation 

Utt - U,, = 0 (3.1) 

Let the initial and the boundary conditions have the form 

u (cc, 0) = Ut (2, 0) = 0, x >o, u, (0, t) = F (9, t>o (3.2) 

Introducing a new unknown function Y (F, t) accordirg to the formulay = XU, - U 



SolutiJn of boundary value problem for nonlinear hyperbolic equations 405 

(r = u,). we obtain the Monge-Ampere equation 

YFl - ‘rr,Ytt = 1, x = yr, (3.3), 

Seeking the solution to our problem in the form 
m 

Y (r, t) = 2 ACk) (t) rk (3.4) 
k=o 

we find that A(O) (t) = 0 and /I(l) (t) = t, since the line r = 0 corresponds to a weak 

discontinuity propagating with a unit velocity. For s > 2 the coefficients AcS) (t) are 

found from the following equations (h: > 1): 

f: (i + 1) [(/c _ i + 1) Aji+‘)At(kmi+l) _ (i + 2) A(i+2)A$:-i)] = 0 (3.5) 
i=O 

From (3. 5) we find by induction that all A(*) (t) = C, (S > 2), where C, are arbitr- 

ary constants. Consequently the series (3.4) has the form 

Y (r,,t) = tr + jj C,rs (3.6) 
S==Z 

The constants C, can be found from the following equation derived from (3.2) 

t + r, SC, [F(t)]“-’ = 0 (3.7) 
S=2 

Let us set F (1) = o and assume F (t) to be such, that a unique inverse function F-l 

(F-1 (0) = Qexists near the point t = 0 

t = F-’ (0) = r, akmk (3.8) 
k=l 

and the series (3.8) converges absolutely in the region ) w 1 < 61~. Then (3.7) and (3.8) 

imply that C,+r= -a, / +I, and the series (3.6) as well as the series for the deriva- 

tives all converge whenever the series for F-l (a) converges. 

In addition to establishing the convergence of the series in question, we must also 

establish the feasibility of the passage to the physical X1, X2, t -space, i.e. the sol- 

vability of the Eqs. (1.3) with respect to the functions r = r (q, x2, t) and Cp = Cp 

(zr, x2, t). To do this, it is sufficient to verify that the Jacobian 1 = d (~1, x2) / 8 

(r, cp) does not vanish within the time interval Cl < t < 7’. Having computed 1 for a 

fixed value of t, we obtain 

I = i--I (YTp - r-1Yq)2 - Y,,. (Y, + r_lY,,) (3.9) 
The form of I given by (3.9) implies at once that if the flow is not too dissimilar from 

a one-dimensional flow (Y,.,, Y,and Yv9 are small), then a passage to the physical 

x17 x2, t -space near the surface Rt is possible as Yrr (0, t) and ‘4,. (0, t) #O. 

4, Let us make use of the expressions for the functions derived in Sect. 2 to investi- 

gate the propagation of weak shock waves arising, after the disruption of the potential 

flows, directly at the surface Rf of the weak discontinuity, for the case of compressive 

flows (the piston St moving into the gas). 

Formulas (1.3) imply that the gradients of the gasdynamic quantities become infinite 
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at the surface Rt when Yy,, (O,cp, t) vanishes. Thus, having found the curve t = t (cp) 
from the equation a(s) (q~, t) = 0 we obtain, in the zl, x2, t -space, a three-dimens- 

ional curve r on the surface Rt at which a shock wave begins to form with zero initial 

intensity. 
To find the law of motion of the shock wave across a constant background, we shall 

use the following segment of the series (1.4) 

n = a(O) + a(l)/. + @)r2 + a(3)7-3 (4.1) 
in which u(~) (cp, t) is defined by (1.9). We assume that the shock wave is weak and 
that the flow behind it is isentropic, potential, and described by (4.1). As we have al- 

ready noted in Cl], the term 0) rs must be retained for the transfer of the profiles of 
the quantities behind the shock wave. 

The motion of the shock wave front in the LC~, x,-plane will be described by the for- 

mulas (1.3) in which V is replaced by A from (4.1) and set r = R (cp, t),where R is 

a function to be defined. The equation forR (cp, t) can be obtained by finding the 
normal velocity of motion D* (cp, t) of the shock wave described by the formulas 

zt = Xl (9, 0, 22 = 52 tcp, t) which follow from (1.3) and equating this velocity 
to the expression 

D (cp, t) = 1 + 
‘t’ R 1 (r&l)” R2 

(4.2) 

where D (cp, 1) is the normal velocity of motion of the shock wave obtained from the 
Hugoniot conditions [S]. 

Performing the computations we obtain, from the relation D*’ = D2 the following 
first order nonlinear partial differential equation for the function R(s,t) : 

D” [(AppRp + AR)” + (B + AR,)‘I = 

zzz 
[( 
ArtA - A,.,. +j R, + (&.B - R-4”) RL -t (&$ - 9,dl)]2 (4.3) 

The initial condition R = 0 holds for (4.3) along the line 1 [l] 

t= 
1 

[ 

1 

(r+l)“~~(cp) W(cp)(fff”) - 2(r+ I,] (4.4) 

where -_W (cp) > 0 is the normal acceleration of the piston St at t = 0 , and it is 
assumed that no focusing takes place at the surface Rt (the radii of curvature of Rt do 
not vanish). 

The independent term in the left-hand part of (4.3) (not containing R ) is equal to 
B2 and also to the independent term in the right-hand side of (4.3). as A,.t = 1 + 0 
(r). Therefore (4.3) has a solution R zs 0 satisfying the initial condition R = 0 along 
the curve 1. 

Having computed the possible values of the normal derivative of R along the curve 
,? and reducing the solution of the problem, in the usual manner, to a solution of a 
system of ordinary differential equations. we can show that when certain restrictions 

are imposed on the classes of flows, only one nonzero solution of(4.3) exists, apart from 
the zero solution near I, satisfying all the necessary conditions and having a physical 

meaning. 
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6. Let us consider in more detail the one-dimensional propagation of weak cylindr- 
ical shock waves through a stationary gas. 

Let a cylindrical piston, which at the initial instant has a zero velocity and nonzero 
acceleration - W > 0 begins to enter a homogeneous gas flowing at that instant with 

the speed of sound c = ‘l outside a cylindrical surface of radius R, . The instant t* 
of destruction of the potential flow at the surface of weak discontinuity is determined 

by formula (4.4). 
Introducing the variable z = t -I- fi, we obtain from (4.3). after computing u@) 

(cp, t) and a(s) (cp, t) the following ordinary differential equation for R= R (x) : 

R’ {C&~~ + (y +. 1) x + R [AX - ljz (y + 1) (7 f 4) dnc f “leCs2 -f 
+ l/J, (157 + 27) ~“21) + R [1/2C2z-“2 + 3/a (?’ t I)1 + 
+ li2R2 [A - 1/2 (T + 1) (r + 4) (Inz + 1) -I- %C2 (15~ f 

+ 27) x-‘/z - (y + 1)2/16] = 0 (5.1) 
where the constant C, can be tound from (2.6) and is 

Cz = RO+ W-r (1 - (y + 1) 4, W < 0 (dr*/& = --Iv) (5.21 

and the constant A = l/s c3 is defined from (2.7) using the prescribed value for the 
derivative of the acceleration at t = 0. 

The initial point (R, x) = (0, x*) = (0, t* + Ho) for (5.1) is a saddle point and 
two integral curves pass through it. One of them is fi 5 0 and the other curve has a 
positive slope at the point (0, s*) provided that the constants C’s, A and z*satisfy the 

inequality 

A.E* - 1/2 (r + 1) (7 + 4) P In z’ -+ **/&22 + 1/4Cz (137 -I- 27) IC*‘.*< 0 (5.3) 

When the values of the constants w, R,, A and y are fixed, a nonzero solution of 
(5.1) passing through the point (0, z*) can be constructed by numerical method. When 
conditions (5.3) hold, the integral curves have a single maximum on the interval 

ix* 1 oe) and decrease to zero at x + 00. 

IO ZD 5 
Fig. 1 

Figure 1 gives the numerical results 
computed for Y = 1.4, w = -1, 

H, = 1 and for the values of A equal 
to 15, 19, 21 and 23. the latter corre- 
sponding to the curves 1-4 resnectiv- 

ely. The maximum values of R and the 
corresponding values of x are:(O. 182, 
18.3), (0.263, 12.8). (0.344, 10.1) 
and (0.547, 7.3). At the critical value 

A=A*z 25.4 the inequality (5.3) 
violates. 

In conclusion, let us investigate the 
problem of the asymptotic law of decay 
of weak cylindrical shock waves over 

long periods of time (at long distances 
from the wave origin). 

Assuming that R -+ 0 as x + 00 and 
estimating the order of the terms in 
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(5.1) in the first approximation we obtain, neglecting the higher order terms. the foll- 
owing equation: H’x + 3/4R = 0 (5.4) 

which yields asymptotic law of decay of weak shock waves R = 0 (d4) established 
by Landau [7]. Expressing further R (x) in the form 

R (x) = CX-~/~ + 0 (z), C = const (5.5) 

and estimating the order of the terms in the equation for Q (x) obtained from (5.1) we 
arrive, in the second approximation, at the following equation (assuming that ]im Q 

(x)t%= 0 when t -too): 

(7 + 1) zQ’ + s/4 (y + 1) Q - L/&C,~-“‘4 - 0 (5.6) 

The latter can be used to obtain the following law of decay of the weak cylindrical 
shock waves at large t 
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